
23/01/2026 09:43 1/6 Objektorientierte Programmierung mit Java

wiki - http://dwiki.jdsr.de/

Objektorientierte Programmierung mit Java

Die objektorientierte Programmierung (OOP) ist ein zentrales Paradigma der modernen
Softwareentwicklung. Java, als eine der bekanntesten Programmiersprachen, ist von Grund auf
objektorientiert. Dieser Artikel gibt eine Einführung in die Grundlagen der OOP mit Java und zeigt, wie
diese Konzepte in der Praxis angewendet werden.

Grundlagen der Objektorientierung

Die objektorientierte Programmierung basiert auf vier grundlegenden Prinzipien:

Kapselung: Daten und Methoden werden in Klassen zusammengefasst. Die interne
Implementierung ist vor dem Zugriff von außen geschützt.
Vererbung: Klassen können Eigenschaften und Methoden von anderen Klassen übernehmen.
Polymorphismus: Objekte können in verschiedenen Formen auftreten, und Methoden können
überladen oder überschrieben werden.
Abstraktion: Wichtige Eigenschaften eines Objekts werden hervorgehoben, unwichtige Details
ausgeblendet.

Zusätzlich gibt es wichtige Konzepte wie Assoziation, Aggregation und Komposition, die die
Beziehungen zwischen Klassen beschreiben.

Klassen und Objekte

In Java ist eine Klasse eine Blaupause für Objekte. Ein Objekt ist eine Instanz dieser Klasse.

Beispiel für eine einfache Klasse:

public class Auto {
 // Attribute (Eigenschaften)
 String marke;
 String modell;
 int baujahr;

 // Konstruktor
 public Auto(String marke, String modell, int baujahr) {
 this.marke = marke;
 this.modell = modell;
 this.baujahr = baujahr;
 }

 // Methode
 public void starten() {
 System.out.println(marke + " " + modell + " startet.");
 }

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system

Last
update:
11/02/2025
22:00

informationstechnik:programmierung:oop_programmierung http://dwiki.jdsr.de/doku.php?id=informationstechnik:programmierung:oop_programmierung

http://dwiki.jdsr.de/ Printed on 23/01/2026 09:43

}

Erstellen eines Objekts:

public class Main {
 public static void main(String[] args) {
 Auto meinAuto = new Auto("VW", "Golf", 2020);
 meinAuto.starten();
 }
}

Kapselung

Die Kapselung schützt die Daten einer Klasse, indem sie als privat deklariert werden und nur über
Methoden (Getter und Setter) zugänglich sind.

Beispiel:

public class Konto {
 private double saldo;

 public Konto(double anfangsSaldo) {
 this.saldo = anfangsSaldo;
 }

 public double getSaldo() {
 return saldo;
 }

 public void einzahlen(double betrag) {
 if (betrag > 0) {
 saldo += betrag;
 }
 }

 public void abheben(double betrag) {
 if (betrag > 0 && saldo >= betrag) {
 saldo -= betrag;
 }
 }
}

Vererbung

Vererbung erlaubt es, eine neue Klasse zu erstellen, die von einer bestehenden Klasse erbt.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

23/01/2026 09:43 3/6 Objektorientierte Programmierung mit Java

wiki - http://dwiki.jdsr.de/

Beispiel:

// Basisklasse
public class Tier {
 public void geraeuschMachen() {
 System.out.println("Das Tier macht ein Geräusch.");
 }
}

// Abgeleitete Klasse
public class Hund extends Tier {
 @Override
 public void geraeuschMachen() {
 System.out.println("Der Hund bellt.");
 }
}

public class Main {
 public static void main(String[] args) {
 Tier meinTier = new Hund();
 meinTier.geraeuschMachen(); // Ausgabe: Der Hund bellt.
 }
}

Polymorphismus

Polymorphismus bedeutet, dass eine Methode unterschiedliche Implementierungen haben kann, je
nachdem, welches Objekt sie aufruft.

* Methodenüberladung (Overloading): Mehrere Methoden mit demselben Namen, aber
unterschiedlichen Parameterlisten. * Methodenüberschreibung (Overriding): Eine Methode der
Basisklasse wird in der abgeleiteten Klasse mit einer neuen Implementierung versehen.

Beispiel für Überschreiben:

public class Katze extends Tier {
 @Override
 public void geraeuschMachen() {
 System.out.println("Die Katze miaut.");
 }
}

public class Main {
 public static void main(String[] args) {
 Tier meinTier1 = new Hund();
 Tier meinTier2 = new Katze();

 meinTier1.geraeuschMachen(); // Der Hund bellt.
 meinTier2.geraeuschMachen(); // Die Katze miaut.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last
update:
11/02/2025
22:00

informationstechnik:programmierung:oop_programmierung http://dwiki.jdsr.de/doku.php?id=informationstechnik:programmierung:oop_programmierung

http://dwiki.jdsr.de/ Printed on 23/01/2026 09:43

 }
}

Beispiel für Überladen:

public class Rechner {
 public int addieren(int a, int b) {
 return a + b;
 }

 public double addieren(double a, double b) {
 return a + b;
 }
}

Abstraktion

Mit Abstraktion werden nur die notwendigen Details dargestellt, während komplexe
Implementierungen verborgen bleiben.

Beispiel für eine abstrakte Klasse:

public abstract class Fahrzeug {
 public abstract void fahren();
}

public class Fahrrad extends Fahrzeug {
 @Override
 public void fahren() {
 System.out.println("Das Fahrrad wird gefahren.");
 }
}

public class Auto extends Fahrzeug {
 @Override
 public void fahren() {
 System.out.println("Das Auto wird gefahren.");
 }
}

public class Main {
 public static void main(String[] args) {
 Fahrzeug meinFahrzeug = new Fahrrad();
 meinFahrzeug.fahren(); // Das Fahrrad wird gefahren.
 }
}

Beispiel für ein Interface:

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

23/01/2026 09:43 5/6 Objektorientierte Programmierung mit Java

wiki - http://dwiki.jdsr.de/

Ein Interface definiert einen Vertrag, den die implementierenden Klassen erfüllen müssen. Alle
Methoden in einem Interface sind implizit abstrakt und müssen von den implementierenden Klassen
überschrieben werden.

public interface Fahrbar {
 void fahren();
}

public class Motorrad implements Fahrbar {
 @Override
 public void fahren() {
 System.out.println("Das Motorrad fährt.");
 }
}

public class Auto implements Fahrbar {
 @Override
 public void fahren() {
 System.out.println("Das Auto fährt.");
 }
}

public class Main {
 public static void main(String[] args) {
 Fahrbar fahrzeug1 = new Motorrad();
 Fahrbar fahrzeug2 = new Auto();

 fahrzeug1.fahren(); // Das Motorrad fährt.
 fahrzeug2.fahren(); // Das Auto fährt.
 }
}

Assoziation

Assoziation beschreibt die Beziehung zwischen zwei Klassen. Es gibt verschiedene Formen:

* Einfache Assoziation: Eine Klasse kennt eine andere. * Aggregation: Eine “Hat-ein”-Beziehung,
bei der das Teil unabhängig vom Ganzen existieren kann. * Komposition: Eine stärkere Form der
Aggregation, bei der das Teil nicht ohne das Ganze existieren kann.

Beispiel für Assoziation:

public class Fahrer {
 String name;

 public Fahrer(String name) {
 this.name = name;
 }
}

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last
update:
11/02/2025
22:00

informationstechnik:programmierung:oop_programmierung http://dwiki.jdsr.de/doku.php?id=informationstechnik:programmierung:oop_programmierung

http://dwiki.jdsr.de/ Printed on 23/01/2026 09:43

public class Auto {
 String modell;
 Fahrer fahrer; // Assoziation

 public Auto(String modell, Fahrer fahrer) {
 this.modell = modell;
 this.fahrer = fahrer;
 }
}

Fazit

Die objektorientierte Programmierung mit Java bietet eine strukturierte und wiederverwendbare Art
der Softwareentwicklung. Durch das Verständnis von Klassen, Objekten, Kapselung, Vererbung,
Polymorphismus, Abstraktion und Assoziation können komplexe Programme effektiv und effizient
entwickelt werden.

Weitere Übung und praktische Beispiele helfen dabei, diese Konzepte zu vertiefen und im Berufsalltag
anzuwenden.

Weiterführende Literatur

“Java ist auch eine Insel” von Christian Ullenboom – Ein umfassendes Nachschlagewerk
für Java.
“Head First Java” von Kathy Sierra und Bert Bates – Ein praxisnahes Buch für Einsteiger:
https://openbook.rheinwerk-verlag.de/javainsel/
Oracle Java Documentation: https://docs.oracle.com/de/java/
**w3schools“”: https://www.w3schools.com/java/java_oop.asp

From:
http://dwiki.jdsr.de/ - wiki

Permanent link:
http://dwiki.jdsr.de/doku.php?id=informationstechnik:programmierung:oop_programmierung

Last update: 11/02/2025 22:00

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
https://openbook.rheinwerk-verlag.de/javainsel/
https://docs.oracle.com/de/java/
https://www.w3schools.com/java/java_oop.asp
http://dwiki.jdsr.de/
http://dwiki.jdsr.de/doku.php?id=informationstechnik:programmierung:oop_programmierung

	Objektorientierte Programmierung mit Java
	Grundlagen der Objektorientierung
	Klassen und Objekte
	Kapselung
	Vererbung
	Polymorphismus
	Abstraktion
	Assoziation
	Fazit
	Weiterführende Literatur

